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Dirac Notation in QM (Quantum Mechanic) you
normally using the Dirac Notation. Vectors are
normally column vectors (“ket”)

density operator Suppose a quantum system is in
one of a number of states |1;), where 7 is an index,
with respective probability’s p;.

e The |¢;) are called the pure states.

e define the density operator

p= Zpi |s) (Wil

quantum operation is described by an set of Kraus-
operator’ s {K;} with 3, K;K] = I
ps=¢elps) = trg(U(p®la)y (alg) U)

POVM measurement set of Measurement Opera-
tors {E,,} with ) FE,, = I. Measurement Re-
sult:

p(m) = tr (Emp)
Shannon Entropy H (X)= -3 p.logp,

Von Neumann Entropy S (X) = —tr(plogp)

e Shannon Entropy is special case,

2y P |7) (x| and (z]y) = duy
S (X) = H (X)

ifft p =

e Unit is bit resp. qubit

e Convention: log with basis 2

Conditional Entropy H (X|Y)=H (X,Y)—H (V)

Mutual Information

H(X:Y) =

e analog for S (X)

Holevo Bound Suppose Alice prepares a state px
where X = 0,...,n with probability’s po, ..., pn.
Bob performs a measurement described by POVM
elements {E,} = {Ey,...,E,} on that state,
with measurement outcome Y. The Holevo bound
states that for any such measurement Bob may do:

H(X:Y)<S(p) = peS(pa),

where p =3, pupa.

e If all p, are in a pure state but orthogonal to each
other H (X :Y) is maximal.



Fidelity is measure for degree of identity form a quan-
tum operation € with Kraus operators E;

Flp,0) =3 It (o)

i.i.d. the X; are independent, identical distributed

Law of Large Numbers Suppose X;,X» ... ii.d.
with finite first and second moment. Then for any
n

e>0
=3 Xi—- E(X) ge> =1

. < 1
lim p
n—oo n
i=1
e-typical Let p = 3 p(x)|z) (x| be an orthonormal
decomposition. A sequence x1,...,xz, is called e-
typical, iff
1 1
—10g( >—5(P)‘§6
n p(z1)p(x2) - p(n)
Correspondingly is  the according state
|x1) |22) - - - |2 ) called e-typical.
The subspace of all e-typical states is denoted

T (n,€). The according projector on this subspace
is

Pne= Y le){e] @ ®zn) (@l

T e—typical
Theorem about Typical Subspaces

1. Consider € > 0. For everyd > 0 and sufficient big
n:

tr (P (n,e)p®") >1-94

2. For every € > 0 and § > 0 and sufficient big n the
dimension of T (n, €) fulfill |T" (n,€)| = tr (P (n,¢€))

(1= 5) 2750~ <|T (n, )| < 27(50)+)

3. Let S (n) be a projector to an arbitrary subspace
of H®" with dimension smaller then 2"f. Con-
sider R < S (p). Then for all § > 0 and sufficient
big n

tr (S (n)p®") <6

Schumacher’s quantum noiseless channel coding
Let {H,p} be an iid. quantum source. If
R > S (p) then there exists a reliable compression
scheme of rate R for the source. If R < S (p) then
any compression scheme or rate R is not reliable.

e Reliable corresponds to F' (p,-) — 1 with n — oo

Shannon: noisy coding For a noisy channel N the
capacity is given by

C(X)=maxH(X:Y)
p(z)

where maximum is to taken over all possible input
distributions p (x) for X and Y is the correspond-
ing output random variable at the output of the
channel.

e Channel is described by a set of conditional prob-
ability’s p (z|y) > 0

e In gm it is much more complicated = Holevo-
Schumacher-Westmoreland Theorem



