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Decision strategies

• Like in the greedy algorithm, we will descend along individual

paths of the decision tree (more than one path now).

• For that, we need a strategy which option to choose at every

node.

• Roughly speaking, the decision strategy in the greedy algo-

rithm was:

Always choose the option that looks best possible

(without any foresight).

• However, this is but one possible decision strategy.

−→ See another example on the next slide.
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Example: feature-based problems on independence systems

• Again, the following is but an example of decision strategies
for feature-based problems on independence systems.

−→ Probably better than greedy but usually not good.

• As usual, the root represents an empty selection of features.

• Decision at a node v:

� One option for every feature that can be added to the
selection of features corresponding to v, provided it does
not make this selection infeasible.

� From each child node of v (=option at decision v), a
greedy path down to a leaf (=solution) is computed.

� The option for which the best solution was found by that
is chosen for the next step down.
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Generic scheme of backtracking

• Go down according to a certain default decision strategy until

� either a feasible solution is found

� or the search gets stuck at a node where it is obvious that
no feasible solution can be reached.

• If a solution is found: terminate.

• If some additional termination criterion (e.g. limited CPU
time) applies: terminate.

• Otherwise, analyze the problem, change the decision strategy
accordingly, and repeat the entire procedure.

−→ See the next slide.

Default decision strategy: often (not exclusively), a strategy
of the greedy type.
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“... analyze the problem, change the ... strategy, repeat ...”

• If the default decision strategy is a greedy strategy, then, by

definition, every option chosen on the way from the root to

the leaf in the decision tree “looks good” at the time when

that decision is made.

• However, some of these decisions may be responsible for a

bad final result.

• The idea is

� to identify these decisions,

� to disallow the options chosen for them in the greedy

algorithm, and

� to start the greedy algorithm again, but obeying these

exclusions.
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Example: machine scheduling

• The greedy algorithm from Section 2.3.4 is a reasonable de-

fault decision strategy (not the only one, of course).

• After applying the greedy algorithm, we try to find another

solution with a smaller completion time.

• General backtracking strategy:

� In the greedy solution, look for decisions that seem to be

responsible for an unnecessarily high completion time.

−→ “Trouble makers”

� Disallow the chosen options for these decisions.
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Remove “trouble makers”

• Simple strategy:

� Select some of the items on the “bottleneck” machines
(preferably items with long durations).

� Disallow their assignments to this machine.

• Smarter strategy:

� Look at the the predecessors of these items with respect
to the precedence constraints.

−→ And the predecessors of the predecessors, etc.

� Identify items that enforce other items to be placed on
bottleneck machines.

� Disallow their assignments.

• Even smarter strategies are imaginable.
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Iterated procedure

• As said before, this backtracking is repeated time and again.

• It is not advisable to let all exclusions of options valid because

� keeping all “old” exclusions valid while adding new ones

may be unnecessarily overrestrictive (the new exclusions

may also resolve the old problems to some extent) and

� an ever increasing set of exclusions would, step-by-step,

eliminate all flexibility from the procedure.
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Backtracking –what’s in a name?

• Often, exactly one decision is identified as a “trouble maker”
and the option chosen for that decision disallowed.

• We can alternatively implement this variant as follows:

1. Go down according to the default decision strategy.

2. While the result is not satisfactory:

(a) Go back on the chosen path in the decision tree,
step-by-step. −→ Backtracking

(b) Stop when a “trouble maker” is found.

(c) Choose another way down at that node
(=option for that decision).

(d) From there, apply the default decision strategy
again to go down up to another leaf.
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Section 3.6:

Cutting Strategies
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Cut-offs

• In Section 3.4 we have seen that, in rare cases, we can afford

to explore the decision tree exhaustively.

• In most cases, the decision tree is way too large, so we can

only afford to explore parts of it.

• In other words, whenever we visit a node of the decision tree,

we will make a decision

� whether to descend into the subtree rooted at this node

� or to discard this subtree as a whole.

• In Sections 3.6.1–3.6.3, we will consider three different tech-

niques that cut off subtrees only if these subtrees are defi-

nitely useless.
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Definitely useless subtrees

A subtree of the decision tree is definitely useless...

• in case of a pure feasibility problem:

if the instance is infeasible or there is at least one

feasible solution outside the union of this subtree

and all subtrees cut off previously.

• in case of an optimization problem:

if the instance is infeasible or unbounded or there

is at least one optimal solution outside the union

of this subtree and all subtrees cut off previously.
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Determining uselessness

• To cut off a subtree without losing accuracy, we will compute
some kind of evidence that this subtree is definitely useless.

• The techniques in Sections 3.6.1–3.6.3 will basically differ by
the very nature of the computation strategy.

• Side remark: we will see that different traversal strategies are
appropriate for the individual types of computation strategies
(cf. Section 3.3).

• Note: for NP-hard algorithmic problems, an efficient strat-
egy cannot perfectly accurately determine whether a subtree
is definitely useless or not.

−→ Otherwise, applying this strategy to the root of the

decision tree would efficiently determine whether the

instance is feasible.
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Conservative determination of uselessness

• So this means we cannot get perfectly accurate evidence

within a reasonable amount of run time.

• Alternatively, we will aim at a conservative strategy.

• This means two outcomes are possible: “yes, definitely use-

less” or “don’t know”.

• It goes without saying that the subtree must indeed be defi-

nitely useless whenever “yes, definitely useless” is the answer.

−→ We are on the “safe side” = conservative strategy.

• The challenge is to design strategies such that “don’t know”

is not too often the outcome in cases where the subtree is

indeed definitely useless.
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Remark on efficieny

• In practice, even a good strategy may leave too many nodes

of the decision tree to be explored.

• This is at least the case whenever too many nodes of the

decision tree have feasible instances as leaves of their sub-

trees.

• In such a case, there are several options.

−→ See the next slide.
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Options

• Terminate the exploration earlier and prematurely.

−→ Cut off all unexplored parts of the tree, useless or not.

• Use a cut-off strategy that is not perfectly conservative.

−→ Useful subtrees may be cut off.

• Switch to another algorithmic strategy to explore selected

subtrees.

−→ Local-search based techniques may be promising

in such a case.
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Section 3.6.1: Constraint Programming
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What is constraint programming?

• Roughly speaking, this technique tries to certify for a given
subtree of the decision tree that none of its leaves is a feasible
solution.

• From Section 3.1, recall that the nodes of the decision tree
may be identified with subsets of the solution space.

• For a better understanding, we will interpret the edges of the
decision tree as additional constraints.

• Example feature-based problems:

� The edges leaving a node of the decision tree on level i−1
represent the options whether or not to select feature i:
xi = 1 or xi = 0.

� Thus, one edge leaving this node represents the additional
constraint xi = 1, the other edge represents the additional
constraint xi = 0.
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Determining uselessness of subtrees

• So, a node v of the decision tree may be identified with the

set of additional constraints on the branch from the root

to v.

• The original constraints of the instance plus these additional

constraints may make all leaves of the subtree rooted at v

infeasible.

• Constraint programming aims at detecting this situation as

often and as early as possible.

• As we said in the introduction to Section 3.6, not all cases

can be detected with absolute certainty.
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Illustrative “toy” example: n-queens problem

• Consider an (n×n)-chessboard.

• When a queen is placed on a square, it may threaten all

squares in the same column and row and in all four diagonal

directions (like in the chess game).

• The problem is to place as many queens as possible on dif-

ferent squares of this chessboard such that no two queens

threaten each other.

• Of course, the maximal number of queens is bounded from

above by n.
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Example n-queens problem (cont’d)

• Idea for a decision tree (of height n):

� A node on level i represents the decision where to place

the i-th queen (if still possible).

� As many as n2 arcs leave a node: one for each position.

• So, every node of the decision tree on height h represents a

particular placement of as many as h queens.

• Whenever a node is visited, it is first checked whether there

is still a position left for yet another queen.

• If not, this subtree is cut off (what else?).
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Constraint propagation

• In the last example, it was easy to determine at each node of
the decision tree whether we may cut off the subtree rooted
at this node.

• However, often we need sophisticated algorithms for that.

• Typically, such an algorithm combines the existing constraints
to generate new, redundant constraints.

−→ The original constraints of the instance plus all

constraints corresponding to the edges from the

root to the current node.

• The heuristic hope is that eventually a set of constraints is
generated from which infeasibility can be immediately con-
cluded.
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Very simple and (hopefully) instructive, yet artificial example

Find x and y subject to

x ∈ {1, 2, ...,9} AND

y ∈ {1, 2, ...,9} AND

x + y = 9 AND

2x + 4y = 24 AND

x < 2y
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Constraint propagation steps in the example

• x ∈ {1, 2, ...,9} AND y ∈ {1, 2, ...,9} AND 2x + 4y = 24

−→ y ≥ 2 AND x ≤ 8 AND y ≤ 6

• x ∈ {1, 2, ...,8} AND y ∈ {2, 3, ...,6} AND x + y = 9

−→ x ≥ 3 AND x ≤ 7

• x ∈ {3, 4, ...,7} AND y ∈ {2, 3, ...,6} AND 2x + 4y = 24

−→ x ≥ 4 AND x ≤ 6 AND y ≥ 3 AND y ≤ 4

• x ∈ {4, 5, 6} AND y ∈ {3, 4} AND x + y = 9

−→ x ≥ 5

• x ∈ {5, 6} AND y ∈ {3, 4} AND 2x + 4y = 24

−→ x = 6 AND y = 3

• x = 6 AND y = 3 AND x < 2y

−→ Infeasible!
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More realistic example: machine scheduling

• From Section 2.3.4, recall the machine scheduling problem.

• Basically, we got N items with durations d1, . . . , dN and
precedence constraints among some pairs of items.

−→ Limits the possibilities to process several items

simultaneously.

• We may also have constraints due to restricted resources.

−→ Limits the possibilities to process several items

simultaneously even further.

• For the individual items, we also assume earliest and latest
permitted start times.

−→ A “time window” for each item.
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Specific example – house construction

• The items are individual tasks such as building the basement,
building a wall, inserting a window, etc.

−→ An appropriate granularity is to be chosen by the

project management.

• Example of precedence constraints: roof construction may
only be started after all wall constructions have been finished.

• Examples of restricted resources: cranes, vehicles, handymen,
specialists.

• Earliest and latest permitted start times may result from
seasons, time-bound contracts with third-party companies,
temporary availability of machines, etc.

−→ In rare cases, this may result in more than one pe-

riod [earliest...latest] permitted start time, but we will

ignore this complication here for simplicity.
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Observation

If there are no restricted resources, the existence of a

feasible schedule can be determined by solving a longest

path problem.

−→ Transformation on the next slide.
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Reduction to a longest path problem:

• For each item i ∈ {1, . . . , N} there are nodes vi and wi and

an arc (vi, wi) with length di in the graph.

• For each precedence constraint (i, j), there is an arc (wi, vj)

with length 0.

• Insert a new node r and for each item i ∈ {1, . . . , N} an arc

(r, vi), whose length is the earliest start time of vi.

• Determine the longest distances from r to all nodes.

−→ For i ∈ {1, . . . , N}, the longest distance from r to vi is

the earliest possible start time with respect to prece-

dence constraints and earliest permitted start times.

• There is a feasible schedule if, and only if, the distance of no

vi is larger than the latest permitted start time of item i.

Section 3.6.1: Dec.-based/constraint prog. c©2004 M. Müller-Hannemann
K. Weihe 300



Idea for an appropriate decision tree in this example

• The edges represent increased earliest start times of selected

items = additional, tighter earliest start times constraints.

• Thus, a node v of the decision tree represents the feasible

solutions that fulfill

� all original constraints and

� the higher earliest start times corresponding to the edges

on the path from the root of the decision tree to v.

• The idea is to make, step-by-step, the restricted resources

redundant by these increased earliest start times.

−→ Eventually, resource restrictions will have no effect

anymore, so the longest path solution will do.
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Idea for how to determine uselessness

• To determine whether the subtree rooted at v is useless, we
ignore all restricted resources and reduce the problem to a
longest path problem only with respect to

� the original earliest permitted start times,

� the original precedence constraints, and

� the increased earliest start times of all edges on the path
from the root of the decision tree to v.

• If the result violates at least one latest permitted start time,
there is no feasible solution satisfying all of these constraints
simultaneously.

−→ The subtree rooted at v is useless and may be cut off.
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Idea for appropriately increased earliest start times

• As usual, the additional constraints will be chosen such that
the individual options (=edges) at a node cover the subset of
feasible solutions corresponding to this node (these options
need not be disjoint).

• As said before, we want to make the resource restriction
redundant by that.

• For that, we look at the solution to the longest path instance
corresponding to this node (see last slide).

• If no restricted resource is overused at any time in this solu-
tion, we have found a schedule that satisfies all constraints.

−→ We may terminate the entire search.

• So, on the next slide, we will consider the case that at least
one restricted resource is overused at some moment in time.
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Appropriately increased earliest start times (cont’d)

• If at least one restricted resource is overused at some mo-

ment in time, we have to increase some earliest start times

in order to remove some overuse in a controlled fashion.

• For that, we look at the very earliest moment in time where

one of the resources is overused.

• Let i1, . . . , ik denote the items processed by that resource at

that moment in time.

• For every j ∈ {1, . . . , k}, there will be one option: increase

the earliest start time up to the smallest completion time of

all items i1, . . . , ij−1, ij+1, . . . , ik.
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Analysis of this strategy

• To resolve this overuse situation, we have to change the start
time of at least one of the items i1, . . . , ik to such an extent
that this item does not contribute to this overuse anymore.

• By construction of the initial schedule (reduction to a longest
path problem), the start times cannot be decreased without
violating the earliest start times or precedence constraints.

• Thus, the start time of at least one item ij must be increased.

• To relax a bit (or even resolve completely) this overuse sit-
uation by moving ij, the start time of ij must be at least
increased to the earliest completion time of the other jobs
involved in the overuse (that is, i1, . . . , ij−1, ij+1, . . . , ik).

• Therefore, all k options together cover all possible cases (not
necessarily disjointly).

Section 3.6.1: Dec.-based/constraint prog. c©2004 M. Müller-Hannemann
K. Weihe 305



Section 3.6.2: Branch-and-Bound
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What is branch-and-bound?

• Branch-and-bound addresses optimization problems in the
first place.

• Recall: every instance of an optimization problem comes
with a real-valued objective function.

−→ Assigns sort of a quality value (profit, cost, ...) to each

feasible solution.

• It is not sufficient to find some feasible solution.

• In fact, the challenge is to find a solution whose objective
function value is very small/large (if not minimal/maximal).

• In the following, we will focus on minimization problems for
conciseness.

−→ Max imization is analogous (“mirror-symmetric”).
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Fundamental concept of branch-and-bound:

• Suppose we know

� either an upper bound U on the optimal cost value

� or a feasible solution s (let c(s) denote the cost value of s).

• Further suppose, for every node v of the decision tree, we can

compute a lower bound `v ∈ R on the objective values of all

feasible solutions in the subtree rooted at v.

• This subtree is useless

� if `v > U , because no optimal solution may be in the sub-

tree rooted at v;

� if `v ≥ c(s), because s is an optimal solution, too, if the

subtree rooted at v contains an optimal solution (in which

case we had a perfectly matching lower bound, `v = c(s)).
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Computing an upper bound

• Clearly, the smaller the value U or c(s) is, the more appro-

priate this value is for our purpose.

• A good upper bound U is often hard to compute.

• However, some upper bound U is easy to compute in most

cases.

−→ For example, in feature–based problems, the total sum

of all feature costs is an upper bound U (very bad in

most cases).
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Computing a feasible solution

• For some optimization problems, a feasible solution s with a

reasonably small value of c(s) is easy to compute.

−→ Example: For the TSP, a simple optimizer such as the

greedy approach from Section 3.2 produces a feasible

solution (typically, quite a good one, in fact).

• For other optimization problems, it is even NP–hard to find

a feasible solution.

−→ Counterexample: Timetabling (cf. Section 1.1).
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Updating the upper bound or feasible solution

• Whenever the tree traversal encounters a leaf (=feasible so-
lution) s′ with c(s′) < U or c(s′) < c(s), respectively, it is
reasonable to replace U or c(s) by c(s′).

−→ To increase the chance of determining useless subtrees.

• In particular, if the tree traversal strategy is chosen appro-
priately, a bad upper bound U or the cost of a bad feasible
solution s may soon be replaced by the cost of an even better
feasible solution s′.

• So, the standard case is that the lower bound `v for a node
v of the decision tree is compared to the cost value c(s′) of
quite a good solution s′, comparison to an abstract upper
bound is a rather exceptional and restricted to the initial
search steps.
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Branch-and-bound and constraint programming

• Branch-and-bound may be viewed as a specific constraint-
programming technique for optimization.

−→ Not the only possible way to tackle optimization

problems using constraint programming, of course,

but fairly standard.

• Constraint programming addressed pure feasibility problems
in the first place.

• More specifically, at every node v of the decision tree, we
tried to find a contradiction in

� the original constraints plus

� the constraints corresponding to the edges along the path
from the root to v.
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Branch-and-bound does fit into this scheme:

• The lower bound `v is computed on the basis of the origi-

nal constraints and the additional constraints along the path

from the root to v.

• The constraint `v > U or `v ≥ c(s), respectively, leads to

a contradiction (hopefully): “yes, definitely useless” (other-

wise, “don’t know”).

−→ The constraint `v > U or `v ≥ c(s), respectively, is an example

of constraint propagation as defined in Section 3.6.1.

Section 3.6.2: Dec.-based/branch&bound c©2004 M. Müller-Hannemann
K. Weihe 313



Branch–and–bound and tree traversal:

• From Section 3.3, recall the various options to define tree–

traversal orders.

• In principle, each of the canonical orders (and any other or-

der) could work well with a branch–and–bound approach.

• However, under normal circumstances, depth-first search

seems to be particularly well suited.

−→ See the next four slides for a discussion.
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Branch-and-bound and tree traversal (cont’d)

• Recall the idea to update the upper bound whenever a new

feasible solution is encountered.

−→ Since the leaves are the solutions, we want to see

leaves, leaves, leaves, as soon as possible.

• In breadth–first search, the leaves are the very last nodes to

be visited.

• In best–first search, this unfavourable effect may also occur

approximately.

• In contrast, in depth–first search, we will see leaves frequently

from the very beginning of the tree traversal.
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Branch-and-bound and tree traversal (cont’d)

• However, this is not the whole story yet.

• The performance of branch-and-bound with depth-first search

depends crucially on the order in which the leaves are visited.

• In fact, search starts in a large region of the solution space

that is

� too bad to be worth exploring but

� too good to allow cut-offs at nodes of small heights,

then the search will spend more time than our universe may

provide before visiting a good solution.

• So, the challenge is to design the details of the depth-first

search carefully to avoid bad situations like that.
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Branch-and-bound and tree traversal (cont’d)

• We only considered the question how to generate new, better

upper bounds from leaves.

• Not considered in detail here: It is often possible (and promis-

ing) to generate new, better upper bounds from internal

nodes of the decision tree as well.

• If things happen to go all right, this may lead to many early

cut-offs even in case of breadth-first search and best-first

search.

• In summary: Sometimes, breadth-first search or best-first

search may outperform the natural-looking choice, depth-

first search.
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Branch-and-bound and tree traversal (cont’d)

• Additional advantage of depth-first search over breadth-first

search and best-first search: requires less space.

• In fact, breadth-first search requires space in the order of

the number of leaves in the worst case (during the very final

stages of the search).

−→ Way too large for any computer that fits into this

universe.

• Best-first search may require the same space as breadth-first

search in the worst case.

• In contrast, depth-first search only requires space in the order

of the height of the tree.

−→ Negligible in the overwhelming number of all applications.
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Lower bounds for subtrees:

• Recall the interpretation of a decision-tree node v as a subset

of the original set of all feasible solutions.

−→ The feasible solutions that obey all constraints corre-

sponding to the tree arcs on the path from the root

to v.

• In other words: We need a lower bound `v on the optimum

objective value inside this subset.
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General idea:

• Some of the side constraints are relaxed or even dropped.

−→ The optimal objective value of the relaxed instance

is a lower bound on the optimal objective value of

the original instance.

• Clearly, such a relaxation to compute lower bounds within a

branch–and–bound approach only makes sense if the relaxed

problem is significantly easier to solve than the original pro-

blem.
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Methodological obstacle:

The subset of the solution space corresponding to a node

of the decision tree need not be the solution space of

some instance of the problem.

−→ See the next slide for an example.
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Example: TSP

• Consider the TSP as a feature-based problem as defined in

Section 2.3.2.

• Recall the decision tree for feature-based problems as defined

in Section 3.1.

• Let v be a node of this decision tree on height h.

−→ For the first h features, a decision has been made

whether to select or to reject each of them.

• Let X denote the set of selected features and Y the set of

rejected features.

• Then v corresponds to the problem of finding an optimal

round tour – among all round tours that cover X and avoid Y .
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Discussion

• This is not an instance of the pure TSP anymore!

• But it is an instance of the following more general problem:

� Input: pairwise distances for N objects, sets X and Y of

pairs of these objects (=arcs).

� Output: a round tour on these N objects such that all

pairs from X are contained but no pair from Y .

� Objective: minimizing the total length of the round tour.

−→ Like in the ordinary TSP.
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Example I: LP–relaxation

• Consider an optimization problem that is formulated as a
special case of ILP.

−→ See Examples 7-8 in Section 1.1 for a definition of

LP and ILP and for TSP as an example of ILP.

• Dropping the constraint that the solution be integral (and
changing nothing else) yields the so–called LP-relaxation of
this algorithmic problem, which is an LP.

• Since the LP-relaxation is indeed a relaxation, its objective
value a lower bound on the objective value of the original
ILP.

• In practice, lower bounds from LP–relaxations are often (but
not always!) quite tight.

• LP is much more efficient to solve than ILP.

−→ Not proved here.
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In particular, LP-relaxation in the 0/1–case:

• Consider a variable x that is restricted to the values 0 and 1.

• This means three things: x has to be integral, x ≥ 0, and x ≤ 1.

• So, in the LP-relaxation, x is restricted to the interval [0 . . .1].

−→ Due to the “surviving” constraints x ≥ 0 and x ≤ 1.

• Example TSP:

� From Section 1.2, recall an ILP-formulation of the TSP.

� The selection or rejection of a feature (i, j) amounts to

an additional constraint: X[i, j] = 1 or X[i, j] = 0, respec-

tively (using the notation “X[ · , · ]” from Section 1.2).

Section 3.6.2: Dec.-based/branch&bound c©2004 M. Müller-Hannemann
K. Weihe 325



Example II: TSP

• There is a large body of literature on branch-and-bound on

problem-specific relaxations and the induced lower bounds.

• In particular, many relaxation techniques have been devel-

oped that are tailored to the TSP.

• On the last slide, we have seen a first, simple example.

• On the next slide, we will briefly sketch another example.

• After that, we will consider one example in greater detail:

1-trees.

−→ A thorough discussion of the two examples on the last

and next slides, respectively, would require too much

additional mathematical background.
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Next example for the TSP

• From Section 1.2, recall that the side constraints to avoid

subtours are of exponential size (Slide 37).

• Forgetting about the problem of subtours yields a model of

polynomial size (O(N2)).

−→ Just the objective function on Slide 35 and the

constraints on Slide 36.

• This basic model may be solved quite efficiently.

−→ Not proved here (keyword b-matching in the literature).
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Example: 1-tree relaxation

• This is one of the most prominent examples of relaxations
for the TSP.

• 1-forest: An undirected graph such that

� the nodes are the N objects of the TSP instance and

� the edges contain at most one cycle and this cycle con-
tains at least one node with degree two.

• 1-tree: An inclusion-maximal 1-forest.

−→ A 1-tree consists of a tree spanning V plus one

additional edge, which closes a (unique) cycle.

• Consider the generic decision-tree definition for feature-based
problems as before.

• Let v be some node of this tree, let Xv be the features already
selected at v and Yv the features already rejected at v.
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Example II (TSP): 1–trees (cont’d)

• Consider the undirected complete graph G = (V, E) on all N

objects.

• Evidently, (a, b) ∈ Xv implies (b, a) 6∈ Xv.

−→ No two directed arcs (a, b) of the original TSP corre-

spond to the same (undirected) edge {a, b} of G.

• Let X̃v and X̃w denote the sets of undirected edges of G

corresponding this way to Xv and Yv, respectively.

• Let D[x, y] denote the distance from object x to object y.

• Transfer of the directed distances to the undirected graph G:

For any two objects x and y, let

D̃({x, y}) := min{D(x, y), D(y, x)}.
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Simple observations:

• The following set Sv of subsets E′ of E is an independence

system:

It is E′ ∈ Sv if, and only if, two facts are true:

E′ ⊆ E \ (X̃v ∪ Ỹv) and E′ ∪ X̃v is a 1-forest.

• The value

min
{ ∑

e∈E′∪X̃v

D̃(e)
∣∣∣∣ E′ ∈ S

}

is a lower bound on the minimal length of a round tour in

the original TSP instance.
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Claim:

• From Section 3.2, example MST, recall that the set of all
forests of an undirected graph G = (V, E) is a matroid.

• It is easy to see (and proved analogously to Section 3.2) that
the following set is a matroid, too:

The set of all forests that cover Xv and avoid Yv.

Consequence:

• The greedy algorithm computes a minimum spanning tree
among all spanning trees that cover Xv and avoid Yv.

• In particular, a minimal 1–tree that contains Xv and avoids Yv

can be computed efficiently.

−→ Details on the next slide.
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Algorithm for minimal 1-trees

• We choose a set Z ⊆ V of nodes, Z 6= ∅

• For each node z ∈ Z, we compute the minimal 1-tree Tz in

G such that z is on the (unique) cycle of Tz and has degree

two in that 1-tree.

• Obviously, the length of each of these 1-trees with respect

to D̃(·) is a lower bound on the minimal length of a round

tour with respect to D[·, ·].
−→ Take the maximal length of all Tz, z ∈ Z, as the lower

bound.

• How to compute Tz...

−→ On the next slide.
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How to compute Tz

• Apply the greedy algorithm for MST, but

� excluding z and all edges that are incident to z and do not
belong to X̃v,

� excluding all edges in Ỹv, and

� starting with the initial set X̃v instead of ∅.

−→ The result is a tree T ′z spanning V \{z} in G, plus zero,

one, or two edges of X̃v that are incident to z.

• If less than two edges of X̃v are incident to z, add as many
edges as necessary to T ′z such that z is incident to exactly
two edges in T ′z, more specifically, choose the one or two
cheapest ones.

• The result is Tz: T ′z plus X̃v plus two edges incident to z.
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How to choose the set Z

• The larger the set Z is, the tighter the lower bound will be.

−→ The smaller the number of decision-tree nodes to be

explored will be.

• On the other hand, the smaller the set Z is, the smaller the

run time will be to process a single decision-tree node.

• To optimize the total run time, a good balance must be

found.

• No mathematical guidance is available for that.

−→ A good balance can only be determined empirically.
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Proof of the claim:

• Let E1 and E2 be two members of this independence system

such that #E1 > #E2

• We have to show: There is e ∈ E1 \ E2 such that E2 ∪ {e} is

a member of the independence system

• If E2 is cycle–free, any edge e ∈ E1 \ E2 will do

• So assume that E2 contains a (unique) cycle −→ E2 meets

exactly as many as #E2 nodes

• On the other hand, E1 meets at least as many as #E1 nodes

• Due to #E1 > #E2, there is at least one node met by E1

but not by E2

• An edge of E1 meeting this node will do
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Remarks on Example II:

• The chosen approach for constructing lower bounds may also
affect the definition of the decision tree

• To see the problem, recall from Slide no. ?? that the nodes
of the decision tree potentially stand for instances of an ex-
tended algorithmic problem

• What we need is an appropriate relaxation of this extended
problem because the lower bound shall be applied at the tree
nodes

• An appropriate relaxation of the original problem need not
be appropriate for the extended problem

• Example II is a positive example of that:

� The 1–tree problem was defined here in view of preceding
decisions that enforced certain arcs

� The resulting independence system is still a matroid
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Section 3.6.3: Dynamic Programming
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What is dynamic programming:

• In the branch-and-bound approach, the subtree rooted at a

node v was excluded due to a comparison with the cost value

of some feasible solution (or some upper bound).

• In the dynamic–programming approach, a subtree is excluded

due to a comparison with another subtree.

• In many specific dynamic-programming algorithms in the lit-

erature, the tree nodes to be compared with each other are

on the same height level of the decision tree. −→ Our first

example will demonstrate why.
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Equivalence and domination

• Let v and w be two nodes of the decision tree.

• Let Tv and Tw denote the subtrees rooted at v and w,

respectively.

• We say that v is

� equivalent to w if the optimal values of feasible solutions

in Tv and Tw are identical;

� dominated by w if the optimal value in Tw is better than

the optimal value in Tv.
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Dynamic programming vs. branch-and-bound

• In the branch–and–bound approach, the subtree rooted at
a node v was excluded because a lower bound `v on the
optimal value in this subtree was not smaller than a certain
upper bound u

• Typically, the upper bound was the objective value of some
feasible solution s: u = c[s]

• Therefore, a subtree was discarded whenever it turned out
that it was

� dominated by s (if c[s] < `v) or

� equivalent to s (if c[s] = `v)

• The idea of dynamic programming is to exclude subtrees

� not if they are equivalent to/dominated by leaves

� but if they are equivalent to/dominated by other tree
nodes
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Example I: One–dimensional knapsack packing

• Roughly speaking, the problem is to select items to be put in
a knapsack such that all selected items fit into this knapsack.
of the selected items is maximized.

• For simplicity, we will consider the one–dimensional case only:

� Input: positive real numbers a[1], . . . , a[n], b.

� Feasible outputs: selections I ⊆ {1, . . . , n} such that∑
i∈I

a[i] ≤ b .

� Objective: maximizing
∑
i∈I

a[i].

• For example, this is the correct model if only a single dimen-
sion such as the volume or the weight is to be considered,
not the exact shapes of the items nor of the knapsack.
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Feature-based interpretation

• One-dimensional knapsack is naturally viewed as a feature–

based problem:

I is the selection of features from the ground set {1, . . . , n}.

• Decision tree for the feature-based case: For k ∈ {0, . . . , n},

� each node v on the k–th level of the decision tree repre-

sents a certain selection Iv ⊆ {1, . . . , k},

� and for the two children of v (let’s say w1 and w2) in the

decision tree, it is

. Iw1 = Iv ∪ {k + 1} (“select k + 1”) and

. Iw2 = Iv (“reject k + 1”).
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Claim:

Let v and w be two tree nodes one the same level. Sup-

pose v and w are equivalent, that is,∑
i∈Iv

a[i] =
∑

i∈Iw

a[i] .

Then the subtree rooted at v or the subtree rooted at w

may be cut off (but not both simultaneously, of course).

−→ Proof on the next slide.
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Proof of the claim:

• Each feasible solution in the subtree rooted at v (resp. w)
may be written as Iv ∪ I ′ (resp. Iw ∪ I ′) for some

I ′ ⊆ {k + 1, . . . , n} .

• On the other hand, for each I ′ ⊆ {k + 1, . . . , n}, it is∑
i∈Iv∪I ′

a[i] =
∑

i∈Iw∪I ′
a[i] .

• Consequence for all I ′ ⊆ {k + 1, . . . , n}:

� Iv ∪ I ′ is feasible if, and only if, Iw ∪ I ′ is feasible.

� Iv ∪ I ′ is optimal if, and only if, Iw ∪ I ′ is optimal.

−→ There is an optimal solution in the subtree rooted at v

if, and only if, there is an optimal solution in the subtree

rooted at w.
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Case of integral values a[1],. . . ,a[n]

• For k ∈ {0, . . . , n} and a node v of the decision tree on the
k–th level, it is

Iv ∈
{
0, . . . ,

k∑
i=1

a[i]
}

.

• For each node on the k–th level, two nodes on the (k+1)-st
level are generated.

−→ One for “select” feature k + 1,

one for “reject” feature k + 1.

• In summary, on the k-th level, at most 2 ·
k−1∑
i=1

a[i] + 2 tree

nodes are generated at all

−→ Of which at most
k∑

i=1

a[i] + 1 nodes will not be cut off.
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Consequences for the integral case

• If
n∑

i=1

a[i] is small, an optimal solution can be computed
quite efficiently.

• In order to guarantee a small number of tree nodes on every

level, the items should be sorted such that

a[1] ≤ a[2] ≤ · · · ≤ a[n] .

−→ For every k > 0, this minimizes the value of
k−1∑
i=1

a[i]

and thus the upper bound on the number of nodes

generated on each level k.
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Integrality and greatest common denominator

For d the greatest common denominator of the values

a[1], . . . , a[n], we may replace b by b/d[k] and a[i] by a[i]/d

for each i ∈ {1, . . . , n}.

−→ For an efficient computation,

• it suffices that
n∑

i=1

a[i]/d is small;

• a large value of
n∑

i=1

a[i] is not a problem, then.
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Dynamic programming and breadth-first search

• To exclude subtrees, we need all nodes on one level of the

decision tree.

−→ This allows us to compare the decision-tree nodes on one

level to determine cases of equivalence.

• Thus, breadth-first search seems to be the traversal strategy

of choice.

• However, if the levels of the decision tree are intractably

large, dynamic programming is infeasible.

−→ At least in this purist form –more sophisticated, spe-

cific variants may still be feasible in particular applica-

tions.
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Example II: Shortest paths

• Input:

� G = (V, A) a strongly connected directed graph

(the “network”);

� ` : A −→ R+
0 (a “length” for each arc);

� s, t ∈ V (“source” and “target”).

• Feasible outputs: paths from s to t.

• Objective: minimizing the length of the path, that is, the

sum of the lengths of the arcs on this path.
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Decision tree

• Each node u of the decision tree stands for a path pu in G
from s to some node x[u] ∈ V (pu may contain cycles).

• In turn, each such path is repesented by exactly one node of
the decision tree.

−→ More formally, for each (s, v)-path in the network, v ∈
V , there is exactly one node u in the decision tree such

that x[u] = v.

• For (v, w) be an arc of the network and u a decision-tree
node such that x[u] = v, there is a corresponding arc (u, u′)
in the decision tree, and it is x[u′] = w.

−→ The arc (u, u′) represents the option to extend pu by

(v, w), and the node u′ represents the concatenation

of pu and (v, w).
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Useless subtrees

• Let u1 and u2 be nodes of the decision tree such that x[u1] =

x[u2].

• Let pu1 and pu2 denote the paths corresponding to u1 and

u2, respectively.

• Assume that

� either pu1 is shorter than pu2

� or both pu1 and pu2 have the same length.

• Then we may safely cut off the subtree of the decision tree

rooted at u2.
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Shortest paths and best–first search

• From Section 3.3, recall best–first search and the “goodness

function”.

• The other way round, we can define a “badness function” to

guide a best–first search.

−→ In each stage, choose an arc with a minimal value of

the badness function.

• For an arc (v, w) of the decision tree, we will take the length

of the path pw represented by w as the badness function value

of (v, w).
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Crucial fact

Since all `–values are nonnegative, the arcs of the decision

tree (that are not in discarded subtrees) are visited in the

order of ascending badness function values.

−→ Proof on the next slide.
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Proof of the crucial fact

• Let (u, u′) and (u′, u′′) be two arcs of the decision tree.

−→ Since all arc lengths in the network are nonnegative,

the badness value of (u, u′) cannot be larger than the

badness value of (u′, u′′).

• Suppose for a contradiction that decision-tree arc (u1, u′1)
has a strictly smaller badness value than (u2, u′2) but is visited
later than (u2, u′2).

• Due to the first point, all arcs on the path from the root to
u1 have strictly smaller badness values than (u2, u′2).

• However, then all arcs on the path from the root to u′1 had
been chosen prior to (u2, u′2).

−→ Contradiction!
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Cut-off strategy

Whenever we reach a node u1 of the decision tree such

that x[u1] = x[u2] for a previously seen node u2, we cut

off the tree node rooted at u1.

−→ Very efficient: each arc (v, w) of the network is touched at

most once because only the first visit of v will be continued

by visiting the arcs that leave v.

Central claim

This cut-off strategy is conservative.

−→ Proof on the next slide.
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Proof of the central claim

• Let u1 and u2 be two nodes of the decision tree such that

x[u1] = x[u2] and u1 has been visited before u2.

• Let u′1 (resp. u′2) be the immediate predecessor of u1 (resp.

u2) in the decision tree (u′1 = u′2 is possible).

• The crucial fact from Slide 352 implies that the badness value

of (u′1, u1) is no worse than that of (u′2, u2).

• Consequently, when (u′2, u2) is visited by the search, u2 may

be cut off because the better (or equally good) option u1

was seen before.

−→ Any extension of pu1 towards t is at least as good as

the same extension attached to pu2.
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Remarks on Example II

• The algorithm presented here may be interpreted as a slight

variation of Dijkstra’s algorithm.

−→ In the standard form of Dijkstra’s algorithm, the order

of arrivals at a node is not necessarily ascending in the

distances from the root.

−→ We have to update the distance at every arrival.

• Sometimes, our variation is presented as Dijkstra’s algorithm

in the literature.
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Example III: Pareto shortest–paths

• We extend the shortest–path problem as follows:

� there is no longer simply one arc length ` [ · ],

� but an arbitrary number `1[ · ], . . . , `k[ · ] of arc lengths,

� and all of them shall be considered simultaneously for

minimization.

• Methodological problem: in general, we cannot find an (s, t)–

path that is minimal with respect to all arc lengths `i[ · ].

• Common solution: a weaker notion of optimality – based on

what is commonly called equivalence, dominance and Pareto

optimality.
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Equivalence and dominance

• Equivalence: Two (s, t)-paths p1 and p2 are said to be equiv-

alent if `i[p1] = `i[p2] for every i ∈ {1, . . . , k}.

• Dominance: One (s, t)–path p1 is said to dominate another

(s, t)–path p2 if

� `i[p1] ≤ `i[p2] for all i ∈ {1, . . . , k} and

� `i[p1] < `i[p2] for at least one i ∈ {1, . . . , k}.
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Pareto optimality

• Pareto optimality : An (s, t)–path p is Pareto optimal if it is

not dominated by any other (s, t)–path.

• Of course, only Pareto optimal solutions are of interest.

−→ Equivalence and dominance as defined on this slide is

indeed an example of the general notions of equivalence

and dominance as defined on Slide 339.
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Crucial fact

The crucial fact from Slide no. 351 can be extended to
this case:

• Let u1 and u2 be nodes of the decision tree such that
x[u1] = x[u2].

• Suppose that either pu1 dominates pu2 or pu1 and pu2

are equivalent.

• Then we may safely discard the subtree of the decision
tree that is rooted at u2.

Consequence:

At any node v ∈ G, we “only” have to maintain the
Pareto–optimal (s, v)–paths.
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