next up previous contents index
Next: Trigonometrie Up: Rechenregeln Previous: Fakultät I.38   Contents   Index


Binomialkoeffizient I.39

$ k\leq n,n\geq0,k\geq0$


$\displaystyle \left(\begin{array}{c}
n\\
k\end{array}\right)$ $\displaystyle =$ $\displaystyle \frac{n!}{k!(n-k)!}$  
  $\displaystyle =$ $\displaystyle \frac{n\cdot\ldots\cdot(n-k+1)}{1\cdot\ldots\cdot(k-1)\cdot k}$  

$\displaystyle \left(\begin{array}{c}
n\\
k\end{array}\right)=\left(\begin{array}{c}
n\\
n-k\end{array}\right)$

$\displaystyle \left(\begin{array}{c}
n\\
k-1\end{array}\right)+\left(\begin{array}{c}
n\\
k\end{array}\right)=\left(\begin{array}{c}
n+1\\
k\end{array}\right)$

$\displaystyle \left(\begin{array}{c}
n\\
0\end{array}\right)=1\quad\left(\begin{array}{c}
n\\
1\end{array}\right)=n$



Marco Möller 17:42:11 24.10.2005